Chemically polished NiTi shape memory alloy(SMA) substrate was treated with a boiling aqueous solution containing hydrogen peroxide to form titania film in situ at low temperature. The surface characterizations of titania film on NiTi substrate were investigated by scanning electron microscopy, X-ray diffractometry and X-ray photoelectron spectroscopy. The results show that titania film is successfully fabricated in situ on NiTi SMA by this surface oxidation method. It is mainly composed of rutile and anatase, whose surface compositions and morphologies are sensitive to H2O2 content. In situ formation mechanism of titania film on NiTi substrate was discussed based on the experimental results.
The effects of heat treatment on the microstructure and compressive properties of porous Ni-rich NiTi shape memory alloy (SMA) fabricated by self-propagating high-temperature synthesis (SHS) were investigated. The solution treatment at 1050℃ has little effects on stable Ti2Ni second phase, however, it decreases the amount of Ni4Ti3 phase derived from the SHS process and results in the improvement of the ductility of porous NiTi SMA. The subsequent aging treatment after solution treatment could lead to the precipitation of the discrete Ni4Ti3 phase in NiTi matrix grains, which increases the brittleness of porous NiTi SMA. Porous NiTi SMA presents a composite fracture behavior consisting of a ductile fracture of NiTi matrix and a cleavage fracture of second phase particles. Many cracks existing on the interfaces indicate that the bonding of the matrix with second phase particles is weak.
The effects of H2O2 pretreatment on the surface characteristics and bioactivity of NaOH-treated NiTi shape memory alloy(SMA)were investigated by scanning electron microscopy,X-ray diffraction,X-ray photoelectron spectroscopy,Raman spectra,Fourier transform infrared spectroscopy as well as a simulated body fluid(SBF)soaking test.It is found that the H2O2 pretreatment can lead to the direct creation of more Ti—OH groups and the decrease in the amount of Ni2O3,Na2TiO3 and remnant NiTi phases on the surfaces of bioactive NiTi SMA prepared by NaOH treatment.As a result,the induction period of apatite formation is shortened by dispensing with the slow kinetic formation process of Ti—OH groups via an exchange of Na+ ions from Na2TiO3 phase with H3O+ ions in SBF,which indicates that the bioactivity of NaOH-treated NiTi SMA can be further improved by the H2O2 pretreatment.