The plane-wave pseudo-potential method within the framework of first principles is used to investigate the structural and elastic properties of Mg2Si in its intermediate pressure (Pnma) and high pressure phases (P63/mrnc). The lattice constants, the band structures. The bulk moduli of the Mg2Si polymorphs are presented and discussed. The phase transition from anti-cotunnite to Ni2In-type Mg2Si is successfully reproduced using a vibrational Debye-like model. The phase boundary can be described as P = 24.02994 + 3.93 × 10^-3T -- 4.66816 × 10^-5T2 -- 2.2501 × 10^-9T3+ 2.33786 × 10^-11T4. To complete the fundamental characteristics of these polymorphs we have analysed thermodynamic properties, such as thermal expansion and heat capacity, in a pressure range of 1-40 GPa and a temperature range of 0-1300 K. The obtained results tend to support the available experimental data and other theoretical results. Therefore, the present results indicate that the combination of first principles and a vibrational Debye-like model is an efficient scheme to simulate the high temperature behaviours of Mg2Si.
The structural and thermoelasticity of antifluorite magnesium silicide at high temper- atures were studied by using the plane-wave pseudo-potential method in the frame- work of density functional theory. The bulk ground-state quantities such as lattice constants, cell volumes, band structures and elastic constants were calculated. It showed that the elastic constants of Mg2Si were well consistent with the experimen- tal data under ambient conditions. The crystal cell volume and bulk modulus of Mg2Si as functions of applied temperature were also presented. The lattice dynamics was applied to determine the phonon dispersion curves. To complete the fundamental characterisation of this crystal, the coefficients of thermal expansion (CTE), isochoric heat capacities and Debye temperature of Mg2Si in the whole temperature range from 0 K to 1300 K and pressure range from 0 GPa to 7.48 GPa were investigated. The results were in favourable agreement with the previous theoretical calculations and the existing experimental data.