The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.
The authors analyze the coral growth band from a colony in the northwestern South China Sea. The coral growth band can provide comprehensive environmental information on climate. The trend from the two-century-long annual density of the coral is in a good agreement with that of the global CO2 concentration. Both trends were small prior to the end of the 19th century; after that, trends became clear, more so from the 1960s to the 1990s (the end of the coral record). The overall coral density shows a steady decrease from the late 19th century to the late 20th century. Therefore, the trend from the annual density of the coral reveals the history of the anthropogenic climate change, which is coherent with instrumental and other proxy records. We propose a simple coral-based proxy for reconstructing the anthropogenic climate change over the past two centuries.
Freshwater input such as runoff and rainfall can enhance stratification in the Bay of Bengal(BOB) through the formation of a "barrier layer",which can lead to the formation of a temperature inversion.The authors focused on the temperature inversion in spring,especially before the onset of the summer monsoon,because previous research has mainly focused on the temperature inversion in winter.Using the hydrographic data from two cruises performed during 24-30 April 2010 and 1-4 May 2011,the authors found that inversions appeared at two out of nine Conductivity-Temperature-Depth Recorder(CTD) stations across the 10°N section and at seven out of 13 CTD stations across the 6°N section in the BOB.In 2010,the inversions(at stations N02 and N05) occurred at depths of approximately 50-60 meters,and their formation was caused by the advection of cold water over warm water.In 2010,the N02 inversion was mainly influenced by the warm saline water from the east sinking below the cold freshwater from the west,while the N05 inversion was affected by the warm saline water from its west sinking below the cold freshwater from its east.In 2011,the inversions appeared at depths of 20-40 meters(at stations S01,S02,S07,S08,and S09) and near 50 m(S12 and S13).The inversions in 2011 were mainly caused by the net heat loss of the ocean along the 6°N section.