We numerically investigate the electromagnetic properties of tellurium dielectric resonator metamaterial at the infrared wavelengths. The transmission spectra, effective permittivity and permeability of the periodic tellurium metamaterial structure are investigated in detail. The linewidth of the structure in the direction of magnetic field W x has effects on the position and strength of the electric resonance and magnetic resonance modes. With appropriately optimizing the geometric dimensions of the designed structure, the proposed tellurium metamaterial structure can provide electric resonance mode and high order magnetic resonance mode in the same frequency band. This would be helpful to analyze and design low-loss negative refraction index metamaterials at the infrared wavelengths.
We demonstrate that the optical absorption is enhanced in small molecule organic solar cells by using a trapezoid grating structure. The enhanced absorption is mainly attributed to both waveguide modes and surface plasmon modes, which is simulated by using finite-difference time-domain method. The simulated results show that the surface plasmon along the semitransparent metallic Ag anode is excited by introducing the periodical trapezoid gratings, which induce the increase of high intensity field in the donor layer. Meanwhile, the waveguide modes result in a high intensity field in acceptor layer. The increase of field improves the absorption of organic solar cells significantly, which is demonstrated by simulating the electrical properties. The simulated results also show that the short-circuit current is increased by 31% in an optimized device, which is supported by the experimental measurement. Experimental result shows that the power conversion efficiency of the grating sample is increased by 7.7%.