In this paper, we propose a theoretical framework of an infeasible interior-point algorithm for solving monotone linear cornplementarity problems over symmetric cones (SCLCP). The new algorithm gets Newton-like directions from the Chen-Harker-Kanzow-Smale (CHKS) smoothing equation of the SCLCP. It possesses the following features: The starting point is easily chosen; one approximate Newton step is computed and accepted at each iteration; the iterative point with unit stepsize automatically remains in the neighborhood of central path; the iterative sequence is bounded and possesses (9(rL) polynomial-time complexity under the monotonicity and solvability of the SCLCP.