Dear Editor,Myristoylation is a naturally occurring post-translational modification for targeting cytoplasmic proteins to intracellular membranes.Unlike enveloped animal viruses,which enter host cells by membrane fusion,nonenveloped animal viruses must disrupt the cell membrane to initiate infection.Some animal viruses and several nonenveloped viruses
Grass carp reovirus(GCRV),the genus Aquareovirus in family Reoviridae,is viewed as the most pathogenic aquareovirus.To understand the molecular mechanism of how aquareovirus initiates productive infection,the roles of endosome and microtubule in cell entry of GCRV are investigated by using quantum dots(QDs)-tracking in combination with biochemical approaches.We found that GCRV infection and viral protein synthesis were significantly inhibited by pretreating host cells with endosome acidification inhibitors NH4Cl,chloroquine and bafilomycin A1(Bafi).Confocal images indicated that GCRV particles could colocalize with Rab5,Rab7 and lysosomes in host cells.Further ultrastructural examination validated that viral particle was found in late endosomes.Moreover,disruption of microtubules with nocodazole clearly blocked GCRV entry,while no inhibitory effects were observed with cytochalasin D treated cells in viral infection,hinting that intracellular transportation of endocytic uptake in GCRV infected cells is via microtubules but not actin filament.Notably,viral particles were observed to transport along microtubules by using QD-labeled GCRV.Altogether,our results suggest that GCRV can use endosomes and microtubules to initiate productive infection.
Aquareovirus species vary with respect to pathogenicity,and the nonstructural protein NS80 of aquareoviruses has been implicated in the regulation of viral replication and assembly,which can form viral inclusion bodies(VIBs) and recruit viral proteins to its VIBs in infected cells.NS80 consists of 742 amino acids with a molecular weight of approximately 80 kDa.Interestingly,a short specific fragment of NS80 has also been detected in infected cells.In this study,an approximately58-kDa product of NS80 was confirmed in various infected and transfected cells by immunoblotting analyses using α-NS80 C.Mutational analysis and time course expression assays indicated that the accumulation of the 58-kDa fragment was related to time and infection dose,suggesting that the fragment is not a transient intermediate of protein degradation.Moreover,another smaller fragment with a molecular mass of approximately 22 kDa was observed in transfected and infected cells by immunoblotting with a specific anti-FLAG monoclonal antibody or α-NS80 N,indicating that the 58-kDa polypeptide is derived from a specific cleavage site near the amino terminus of NS80.Additionally,different subcellular localization patterns were observed for the 22-kDa and 58-kDa fragments in an immunofluorescence analysis,implying that the two cleavage fragments of NS80 function differently in the viral life cycle.These results provide a basis for additional studies of the role of NS80 played in replication and particle assembly of the Aquareovirus.
Viruses in the family Reoviridae are non-enveloped particles comprising a segmented double-stranded RNA genome surrounded by a two-layered or multi-layered icosahedral protein capsid.These viruses are classified into two sub-families based on their particle structural organization.Recent studies have focused on high-resolution three-dimensional structures of reovirus particles by using cryo-electron microscopy (cryo-EM) to approach the resolutions seen in X-ray crystallographic structures.The results of cryo-EM image reconstructions allow tracing of most of the protein side chains,and thus permit integration of structural and functional information into a coherent mechanism for reovirus assembly and entry.
Dear Editor,Reoviruses are non-enveloped icosahedral virions with an outer capsid surrounding their cores,which harbor the10–12 segmented double-stranded RNA(ds RNA)genome.To date,there are 15 proposed genera in the family Reoviridae(King et al.,2012),including Aquareovirus.Generally,aquareoviruses are of low pathogenicity in aquaculture.However,grass carp reovirus(GCRV)is
The double-shelled grass carp reovirus (GCRV) is capable of endogenous RNA transcription and processing.Genome sequence analysis has revealed that the protein VP2,encoded by gene segment 2 (S2),is the putative RNA-dependent RNA polymerase (RdRp).In previous work,we have ex-pressed the functional region of VP2 that is associated with RNA polymerase activity (denoted as rVP2390-900) in E.coil and have prepared a polyclonal antibody against VP2.To characterize the GCRV RNA polymerase,a recombinant full-length VP2 (rVP2) was first constructed and expressed in a baculovirus system,as a fusion protein with an attached His-tag.Immunofluorescence (IF) assays,together with immunoblot (IB) analyses from both expressed cell extracts and purified Histagged rVP2,showed that rVP2 was successfully expressed in Sf9 cells.Further characterization of the replicase activity showed that purified rVP2 and GCRV particles exhibited poly(C)-dependent poly(G) polymerase activity.The RNA enzymatic activity required the divalent cation Mg2+,and was optimal at 28 ℃.The results provide a foundation for further studies on the RNA polymerases of aquareoviruses during viral transcription and replication.