A methodology was presented relating the microstructure of asphalt mixtures to their damage behavior. Digital image techniques were used to capture the asphalt mixture microstructure, and the finite element method was used to simulate the damage evolution of asphalt mixture through splitting test. Aggregates were modeled to be linearly elastic, and the mastics were modeled to be plastically damaged. The splitting test simulation results show that the material heterogeneity, the properties of aggregates and air voids have significant effects on the damage evolution approach. The damage behavior of asphalt mixture considering material heterogeneity is quite different from that of the conventional hypothesis of homogeneous material. The results indicate that the proposed method can be extended to the numerical analysis for the other micromechanical behaviors of asphalt concrete.
实测广州地铁3号线厦滘车辆段咽喉区直、曲线段列车运行引起的周围地面振动影响,分析列车引起地面振动加速度在时、频域内的传播规律。结果表明,咽喉区直线段在轨道35 m范围内,地面竖向振动加速度级为72~95d B,略大于水平振动加速度级62~95 d B;咽喉区曲线段在轨道25 m范围内,地面竖向振动加速度级为70~98 d B,略小于水平振动加速度级80~98 d B;对地铁车辆段咽喉区临近的环境振动评价时,应同时考虑水平、竖向振动影响;中高频振动随距离增加衰减速度较低频快,咽喉区列车运行引发的振动传递到临近建筑物时主要频率成分为4~60 Hz。建议在车辆段减振措施设计时应重点考虑中低频振动的减振方案;在路基外侧沿轨道方向结合排水设施设置明沟利于减弱车辆段列车运行引发的振动传播。