On-line thermo mechanical controlled processing(TMCP) was conducted to develop the third generation high strength low alloy(HSLA) steel with high toughness economically.The ultra-low carbon content ensured a high level of upper shelf energy while ultrafine lath martensitic structure transformed from super-thin pancaked austenite during controlled rolling and cooling.The reduction of martensite block size decreased ductile-to-brittle transition temperature(DBTT) and compensated the strength loss due to carbon reduction.Consequently,the excellent balance of strength and toughness values was obtained as 950-1060 MPa for yield strength,180 J for Charpy V-notch impact absorbed energy at 30℃,which is much superior to that of traditional martensitic steel.Two mechanisms for the refinement of lath martensite block were proposed:One is the austenite grain refinement in the direction of thickness,and the other is the reduction in the fraction of sub-block boundaries with small misorientation and the increase in the fraction of block boundaries with large misorientation,possibly due to austenite hardening.
SUN XinJunLI ZhaoDongYONG QiLongYANG ZhiGangDONG HanWENG YuQing
In order to clarify effects of prior pancaked austenitic structure on microstructure and mechanical properties of transformed martensite in ausformed steel,a super-thin pancaked austenite was processed by multi-pass rolling in a 0.03-2.6Mn0.06Nb-0.01Ti(wt%) low alloy steel.The evolution of prior pancaked austenite grain during multi-pass rolling was studied using Ni-30Fe model alloy.Related with the structure and texture in the prior super-thin pancaked austenite in Ni-30Fe alloy,the texture and anisotropy of mechanical properties of transformed martensite in the studied ausformed steel were focused on.There were mainly three kinds of rolling texture components in the super-thin pancaked austenite:Goss {110} 001,copper {112} 111 and brass {110} 112.They were further transformed into the weak {001} 110 and strong {112} 110,{111} 112 texture components in the martensitic structure.The orientation relationship(OR) of lath martensite transformation from pancaked austenite in the ausformed steel deviated larger from the exact Kurdjumov-Sachs(K-S) OR than in the case of equiaxed austenite without deformation.The tensile and yield strengths of the ausformed martensitic steel first decreased and then increased as the angle between tension direction and rolling direction increased.The main reason for the anisotropy of strength was considered as the texture component {112} 110 in martensite.However,the anisotropy of impact toughness was more complex and the main reasons for it are unknown.
LI ZhaoDongSUN XinJunCAO WenQuanYONG QiLongYANG ZhiGangDONG HanWENG YuQing
A Co32Ni21Cr8Al0.6Y (wt.%) alloy with and without doping 3 wt.% platinum, or co-doping 3 wt.% platinum and 0.1 wt.% dys- prosium was produced by arc melting. The hardness of both base alloy and composition-modified alloy was measured by using a Vickers hardness tester. Isothermal oxidation tests at 1000 ℃ in static air atmosphere were conducted to assess the isothermal oxidation behavior of the alloys. The microstructure and composition of the tested alloys before and after oxidation were investigated by means of X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM) equipped with energy dispersive spectroscopy (EDS) and back scatter detec- tor. Results showed that platinum had significant influence on microstructure of the tested alloy by the formation of β-(Ni,Pt)AI phase. Addi- tion of 3 wt.% platinum could slightly increase the hardness of the tested alloy. Platinum accelerated phase transformation of alumina from metastable θ-Al2O3 to stable α-Al2O3 and suppressed the consumption of 13-phase. Co-doping both 3 wt.% platinum and 0.1 wt.% dysprosium induced the fastest transformation of θ- to α- alumina and the formation of a fine-grained oxide scales. The most effective reduction of oxida- tion rate was achieved by the Pt-Dy co-doping effects.
A mixed-control model was developed to study the transformation character of ferrite formation by a ledge mechanism. A nu- merical two-dimensional diffusion-field model was combined to describe the evolution of the diffusion field ahead of the migrating austenite/ferrite interface. The calculation results show that the bulk diffusion-controlled model leads to a deviation from experimental results under large solute supersaturation. In the mixed-control model, solute supersaturation and a parameter Z together determine the transformation character, which is quantified by the normalized concentration of carbon in austenite at the austenite/ferfite interface. By comparing with experimental data, thepre-exponential factor of interface mobility, M0, is estimated within the range from 0.10 to 0.60 mol-m·J^-1·s^-1 for the alloys with 0.1 lwt%-0.49wt% C at 700-740℃. For a certain Fe-C alloy, the trend of the transformation character relies on the magnitude of M0 as the transformation temperature decreases.