From a two-vortex interaction model in atmospheric and oceanic systems, a nonlocal counterpart with shifted parity and delayed time reversal is derived by a simple AB reduction. To obtain some approximate analytic solutions of this nonlocal system, the multi-scale expansion method is applied to get an AB-Burgers system. Various exact solutions of the AB-Burgers equation, including elliptic periodic waves, kink waves and solitary waves, are obtained and shown graphically.To show the applications of these solutions in describing correlated events, a simple approximate solution for the two-vortex interaction model is given to show two correlated dipole blocking events at two different places. Furthermore, symmetry reduction solutions of the nonlocal AB-Burgers equation are also given by using the standard Lie symmetry method.
We obtain the non-local residual symmetry related to truncated Painlev~ expansion of Burgers equation. In order to localize the residual symmetry, we introduce new variables to prolong the original Burgers equation into a new system. By using Lie's first theorem, we obtain the finite transformation for the localized residual symmetry. More importantly, we also Iocalize the linear superposition of multiple residual symmetries to find the corresponding finite transformations. It is interesting to find that the n-th B^icklund transformation for Burgers equation can be expressed by determinants in a compact way.
Based on the fundamental commutator representation proposed by Cao [4] we established two explicit expressions for roots of a third order differential operator. By using those expressions we succeeded in clarifying the relationship between two major approaches in theory of integrable systems: the zero curvature and the Lax representations for the KdV and the Boussinesq hierarchies. The proposed procedure could be extended to the general case of higher order of differential operators that leads to the Gel'fand-Dickey hierarchy.
Starting from the Davey-Stewartson equation, a Boussinesq-type coupled equation system is obtained by using a variable separation approach. For the Boussinesq-type coupled equation system, its consistent Riccati expansion (CRE) solvability is studied with the help of a Riccati equation. It is significant that the soliton--cnoidal wave interaction solution, expressed explicitly by Jacobi elliptic functions and the third type of incomplete elliptic integral, of the system is also given.
In nonlinear physics, it is very difficult to study interactions among different types of nonlinear waves. In this paper,the nonlocal symmetry related to the truncated Painleve′ expansion of the(2+1)-dimensional Burgers equation is localized after introducing multiple new variables to extend the original equation into a new system. Then the corresponding group invariant solutions are found, from which interaction solutions among different types of nonlinear waves can be found.Furthermore, the Burgers equation is also studied by using the generalized tanh expansion method and a new Ba¨cklund transformation(BT) is obtained. From this BT, novel interactive solutions among different nonlinear excitations are found.
The Bcklund transformation related symmetry is nonlocal, which is hard to be applied in constructing solutions for nonlinear equations. In this paper, the residual symmetry of the Boussinesq equation is localized to Lie point symmetry by introducing multiple new variables. By applying the general Lie point method, two main results are obtained: a new type of Backlund transformation is derived, from which new solutions can be generated from old ones; the similarity reduction solutions as well as corresponding reduction equations are found. The localization procedure provides an effective way to investigate interaction solutions between nonlinear waves and solitons.
The nonlocal symmetry of the generalized fifth order KdV equation(FOKdV) is first obtained by using the related Lax pair and then localizing it in a new enlarged system by introducing some new variables. On this basis, new Ba¨cklund transformation is obtained through Lie’s first theorem. Furthermore, the general form of Lie point symmetry for the enlarged FOKdV system is found and new interaction solutions for the generalized FOKdV equation are explored by using a symmetry reduction method.
The residual symmetry relating to the truncated Painlev6 expansion of the Kadomtsev-Petviashvili (KP) equation is nonlocal, which is localized in this paper by introducing multiple new dependent variables. By using the standard Lie group approach, new symmetry reduction solutions for the KP equation are obtained based on the general form of Lie point symmetry for the prolonged system. In this way, the interaction solutions between solitons and background waves are obtained, which are hard to find by other traditional methods.