您的位置: 专家智库 > >

国家自然科学基金(10421101)

作品数:7 被引量:9H指数:2
相关作者:彭文娟崔贵珍更多>>
相关机构:中国科学院数学与系统科学研究院更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学生物学自动化与计算机技术更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 6篇理学
  • 1篇生物学
  • 1篇自动化与计算...

主题

  • 2篇NAVIER...
  • 1篇手术
  • 1篇图片
  • 1篇共形
  • 1篇共轭
  • 1篇PRIMAR...
  • 1篇QUASI
  • 1篇REMARK
  • 1篇SECOND...
  • 1篇SION
  • 1篇SOLUTI...
  • 1篇SURFAC...
  • 1篇SYMPLE...
  • 1篇TOR
  • 1篇VORTIC...
  • 1篇WATER_...
  • 1篇A-D
  • 1篇ALMOST
  • 1篇CONJUG...
  • 1篇DOMAIN...

机构

  • 1篇中国科学院数...

作者

  • 1篇崔贵珍
  • 1篇彭文娟

传媒

  • 3篇Chines...
  • 2篇Scienc...
  • 1篇中国科学(A...
  • 1篇Acta M...

年份

  • 1篇2016
  • 1篇2014
  • 1篇2009
  • 3篇2008
  • 1篇2007
7 条 记 录,以下是 1-7
排序方式:
Global Smooth Solutions to the 2-D Inhomogeneous Navier-Stokes Equations with Variable Viscosity被引量:3
2009年
Under the assumptions that the initial density ρ0 is close enough to 1 and ρ0-1∈Hs+1(R2);u0∈Hs(R2)∩H_∈(R2) for s>2 and 0<ε<1;the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient depending on the density of the fluid.Furthermore,the L2 decay rate of the velocity field is obtained.
Guilong GUI Ping ZHANG
关于Fatou域的结构
2008年
给定有理函数f的一个不变的多连通吸性域U,我们证明存在一个有理函数g和它的一个完全不变的Fatou域V,使得(f,U)和(g,V)是全纯共轭的,而且g的Julia集的每个非平凡分支都是拟圆周,其内部是一个最多包含一个后临界轨道点的最终超吸性域.进一步,g在相差一个全纯共轭的意义下是唯一的.
崔贵珍彭文娟
On the local wellposedness of 3-D water wave problem with vorticity被引量:2
2007年
In this article, we first present an equivalent formulation of the free boundary problem to 3-D incompressible Euler equations, then we announce our local wellposedness result concerning the free boundary problem in Sobolev space provided that there is no self-intersection point on the initial surface and under the stability assumption that $\frac{{\partial p}}{{\partial n}}(\xi )\left| {_{t = 0} } \right. \leqslant - 2c_0 < 0$ being restricted to the initial surface.
Ping ZHANG~1 Zhi-fei ZHANG~2 1 Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China
关键词:WATER-WAVES
Projective Dirichlet Boundary Condition with Applications to a Geometric Problem
2016年
Given a domain Ω R^n, let λ 〉 0 be an eigenvalue of the elliptic operator L := ∑i,j^n= 1δ/δxi on Ω for Dirichlet condition. For a function f ∈ L2(Ω), it is known that the linear resonance equation Lu + λu = f in Ω with Dirichlet boundary condition is not always solvable. We give a new boundary condition Pλ(u|δΩ) = g, called to be projective Dirichlet condition, such that the linear resonance equation always admits a unique solution u being orthogonal to all of the eigenfunctions corresponding to λ which satisfies ||u||2,2 ≤ C(||f||2 + ||g||2,2) under suitable regularity assumptions on δΩ and L, where C is a constant depends only on n, Ω, and L. More a priori estimates, such as W^2~'P-estimates and the C^2,α-estimates etc., are given also. This boundary condition can be viewed as a generalization of the Dirichlet condition to resonance equations and shows its advantage when applying to nonlinear resonance equations. In particular, this enables us to find the new indicatrices with vanishing mean (Cartan) torsion in Minkowski geometry. It is known that the geometry of indicatries is the foundation of Finsler geometry.
Min JI
Generalized Symplectic Mean Curvature Flows in Almost Einstein Surfaces
2014年
The authors mainly study the generalized symplectic mean curvature flow in an almost Einstein surface,and prove that this flow has no type-I singularity.In the graph case,the global existence and convergence of the flow at infinity to a minimal surface with metric of the ambient space conformal to the original one are also proved.
Jiayu LILiuqing YANG
关键词:SINGULARITY
Remark on the Regularities of Kato's Solutions to Navier-Stokes Equations with Initial Data in L^d(R^d)被引量:3
2008年
Motivated by the results of J. Y. Chemin in "J. Anal. Math., 77, 1999, 27- 50" and G. Furioli et al in "Revista Mat. Iberoamer., 16, 2002, 605-667", the author considers further regularities of the mild solutions to Navier-Stokes equation with initial data uo ∈ L^d(R^d). In particular, it is proved that if u C ∈([0, T^*); L^d(R^d)) is a mild solution of (NSv), then u(t,x)- e^vt△uo ∈ L^∞((0, T);B2/4^1,∞)~∩L^1 ((0, T); B2/4^3 ,∞) for any T 〈 T^*.
Ping ZHANG
On the structure of Fatou domains被引量:1
2008年
Let U be a multiply-connected fixed attracting Fatou domain of a rational map f.We prove that there exist a rational map g and a completely invariant Fatou domain V of g such that(f,U) and(g,V) are holomorphically conjugate,and each non-trivial Julia component of g is a quasi-circle which bounds an eventually superattracting Fatou domain of g containing at most one postcritical point of g.Moreover,g is unique up to a holomorphic conjugation.
CUI GuiZhenPENG WenJuan
关键词:PUZZLES
共1页<1>
聚类工具0