In the process of accurate interpretation of multi-wave seismic data,we wanted to solve the problem of multi-wave information recognition.Based on techniques of elastic wave forwarding,targeting the geological model of a reservoir of an oil field exploration area,we used a high-order staggered-grid difference technology to simulate many shots of seismic records of nonzero offset shots,implemented multi-wave seismic data processing to acquire the CMP of P waves and converted waves,NMO traces of CCP pre stacks,including AVA information and superposition profiles.Based on the AVA calculation of the model,the layer parameters of the model and the forwarding wave field relations of the P-S wave,we also compared and studied the correspondence between P waves and converted waves.The results of our analysis show that the results from simulation and from the AVO analysis are consistent.Significant wave field differences between P waves and converted waves in the same reservoir were found,which are helpful in recognizing and interpreting the multi-wave information in this area.We made use of the multi-wave data to provide the important guidelines for reservoir prediction.
On the basis of Chapman's(2003) model,as the seismic wave incidences angles vary from 0° to 45° while propagating in anisotropic media(HTI),the slow S-wave will sufferred by serious attenuation and dispersion and is sensitive to fluid viscosity but the P-and fast S-waves don't.For slow S waves propagating normal to fractures,the amplitudes are strongly affected by pore fluid.So,the slow S-wave can be used to detect fractured reservoir fluid information when the P-wave response is insensitive to the fluid.In this paper,3D3C seismic data from the Ken 71 area of Shengli Oilfield are processed and analyzed.The travel time and amplitude anomalies of slow S-waves are detected and correlated with well log data.The S-wave splitting in a water-bearing zone is higher than in an oil-bearing zone.Thus,the slow S-wave amplitude change is more significant in water-bearing zones than in oil-bearing zones.